Mahler’s measures on function spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Induced Measures on Wallman Spaces

Let X be an abstract set and .t; a lattice of subsets ofX. To each lattice-regular measure we associate two induced measures and on suitable lattices of the Wallman space Is(L) and another measure IX’ on the space I,(L). We will investigate the reflection of smoothness properties of IX onto t, and Ix’ and try to set some new criterion for repleteness and measure repleteness.

متن کامل

Measures on compact HS spaces

We construct two examples of a compact, 0-dimensional space which supports a Radon probability measure whose measure algebra is isomor-phic to the measure algebra of 2 ! 1. The rst construction uses } to produce an S-space with no convergent sequences in which every perfect set is a G. A space with these properties must be both hereditarily normal and hereditarily countably paracompact. The sec...

متن کامل

On convex risk measures on Lp-spaces

Much of the recent literature on risk measures is concerned with essentially bounded risks in L∞. In this paper we investigate in detail continuity and representation properties of convex risk measures on L spaces. This frame for risks is natural from the point of view of applications since risks are typically modelled by unbounded random variables. The various continuity properties of risk mea...

متن کامل

On Radon measures on first-countable spaces

It is shown that every Radon measure on a first-countable Hausdorff space is separable provided ω1 is a precaliber of every measurable algebra. As the latter is implied by MA(ω1), the result answers a problem due to D. H. Fremlin. Answering the problem posed by D. H. Fremlin ([4], 32R(c)), we show in this note that, assuming (∗) ω1 is a precaliber of every measurable Boolean algebra, every Rado...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2011

ISSN: 0019-2082

DOI: 10.1215/ijm/1369841802